An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Key theorem in probability theory

Property Value
dbo:description
  • mathematischer Satz (de)
  • משפט מתמטי יסודי בהסתברות וסטטיסטיקה (iw)
  • 確率論・統計学における極限定理の一つ (ja)
  • Olasılık teorisinde anahtar bir teorem (tr)
  • key theorem in probability theory (en)
  • ključni izrek teorije verjetnosti (sl)
  • stelling in de kansrekening (nl)
  • teorema (gl)
  • teorema clau en la teoria de probabilitat (ca)
  • teorema de la estocástica (es)
  • théorème de la théorie des probabilités (fr)
  • twierdzenie rachunku prawdopodobieństwa (pl)
  • valószínűségi tétel (hu)
  • věta v teorii pravděpodobnosti (cs)
  • Bariantza eta batezbesteko finituak dituzten ausazko n aldagai independenteren baturak, n-k infiniturantz jotzen duenean, banaketa normalerantz joko duela dioen teorema, aldagai bakoitzaren banaketa nolanahikoa izanagatik ere. (eu)
  • 統計學定理 (zh)
  • թեորեմ հավանականությունների տեսությունում (hy)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:align
  • center (en)
dbp:caption
  • This figure demonstrates the central limit theorem. The sample means are generated using a random number generator, which draws numbers between 0 and 100 from a uniform probability distribution. It illustrates that increasing sample sizes result in the 500 measured sample means being more closely distributed about the population mean . It also compares the observed distributions with the distributions that would be expected for a normalized Gaussian distribution, and shows the chi-squared values that quantify the goodness of the fit . The input into the normalized Gaussian function is the mean of sample means and the mean sample standard deviation divided by the square root of the sample size , which is called the standard deviation of the mean . (en)
  • Comparison of probability density functions for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the previous graphs are rescaled, superimposed and compared with a normal distribution . (en)
dbp:cs1Dates
  • ly (en)
dbp:date
  • July 2023 (en)
dbp:field
dbp:generalizations
dbp:id
  • p/c021180 (en)
dbp:image
  • Dice sum central limit theorem.svg (en)
  • Empirical CLT - Figure - 040711.jpg (en)
dbp:mathStatement
  • (en)
  • , (en)
  • . (en)
  • and (en)
  • Suppose is a sequence of independent random variables, each with finite expected value and variance (en)
  • * . Then converges in distribution to . (en)
  • Suppose is a sequence of i.i.d. random variables with and Then, as approaches infinity, the random variables converge in distribution to a normal : (en)
  • Let be a random variable distributed uniformly on , and , where * satisfy the lacunarity condition: there exists such that for all , * are such that (en)
  • Define If for some (en)
  • and denotes the Euclidean norm on (en)
  • where is a universal constant, (en)
  • Suppose is a sequence of real-valued and strictly stationary random variables with for all (en)
  • Let be independent -valued random vectors, each having mean zero. Write and assume is invertible. Let be a -dimensional Gaussian with the same mean and same covariance matrix as . Then for all convex sets (en)
  • Construct # If is absolutely convergent, , and then as where (en)
  • # If in addition and converges in distribution to as then also converges in distribution to as (en)
  • Let be independent, identically distributed random variables with and , and let be a sequence of non-negative integer-valued random variables that are independent of . Assume for each that and where denotes convergence in distribution and is the normal distribution with mean 0, variance 1. Then (en)
  • Lyapunov’s condition is satisfied, then a sum of converges in distribution to a standard normal random variable, as goes to infinity: (en)
dbp:mode
  • cs1 (en)
dbp:name
  • Theorem (en)
  • Lemma (en)
  • Central Limit Theorem (en)
  • Lindeberg–Lévy CLT (en)
  • Lyapunov CLT (en)
  • Robbins CLT (en)
dbp:statement
  • The scaled sum of a sequence of i.i.d. random variables with finite positive variance converges in distribution to the normal distribution. (en)
dbp:title
  • Central limit theorem (en)
  • Central Limit Theorem (en)
dbp:totalWidth
  • 830 (xsd:integer)
dbp:type
dbp:urlname
  • CentralLimitTheorem (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:label
  • Central limit theorem (en)
  • مبرهنة النهاية المركزية (ar)
  • Teorema del límit central (ca)
  • Centrální limitní věta (cs)
  • Θεώρημα κεντρικού ορίου (el)
  • Zentraler Grenzwertsatz (de)
  • Limitearen teorema zentral (eu)
  • Teorema del límite central (es)
  • Teorema limit pusat (in)
  • Teoremi centrali del limite (it)
  • 中心極限定理 (ja)
  • Théorème central limite (fr)
  • 중심 극한 정리 (ko)
  • Centrale limietstelling (nl)
  • Centralne twierdzenie graniczne (pl)
  • Teorema central do limite (pt)
  • Центральная предельная теорема (ru)
  • Centrala gränsvärdessatsen (sv)
  • Центральна гранична теорема (uk)
  • 中心极限定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is dbp:term of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International