| dbo:description
|
- lema de que o máximo común divisor dos coeficientes é unha función multiplicativa (gl)
- lemme d'arithmétique des polynômes (fr)
- własność wielomianów pierwotnych (pl)
- о несводимых многочленах (ru)
- lemma that the greatest common divisor of the coefficients is a multiplicative function (en)
|
| dbo:wikiPageWikiLink
| |
| dbp:mathStatement
|
- For each pair of polynomials in ,
:
where denotes the radical of an ideal. Moreover, if is a GCD domain , then
:
where denotes the unique minimal principal ideal containing a finitely generated ideal . (en)
- If P and Q are primitive polynomials over the integers, their product PQ is also primitive. (en)
- A non-constant polynomial in Z[X] is irreducible in Z[X] if and only if it is both irreducible in Q[X] and primitive in Z[X]. (en)
- Two polynomials are primitive if and only if the product is primitive. (en)
|
| dbp:name
|
- Proposition (en)
- Corollary (en)
- Gauss's lemma (en)
|
| dbp:wikiPageUsesTemplate
| |
| dct:subject
| |
| rdfs:label
|
- Gauss's lemma (polynomials) (en)
- Lema de Gauss (es)
- Lemma von Gauß (de)
- Lemme de Gauss (polynômes) (fr)
- Lemma di Gauss (polinomi) (it)
- 원시 다항식 (ko)
- Twierdzenie Gaussa (algebra) (pl)
- Lema de Gauss (pt)
- Лемма Гаусса о приводимости многочленов (ru)
- Лема Гауса про незвідні многочлени (uk)
- 高斯引理 (多項式) (zh)
|
| owl:sameAs
| |
| prov:wasDerivedFrom
| |
| foaf:isPrimaryTopicOf
| |
| is dbo:wikiPageRedirects
of | |
| is dbo:wikiPageWikiLink
of | |
| is foaf:primaryTopic
of | |