An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

unknown

Property Value
dbo:description
  • lema de que o máximo común divisor dos coeficientes é unha función multiplicativa (gl)
  • lemme d'arithmétique des polynômes (fr)
  • własność wielomianów pierwotnych (pl)
  • о несводимых многочленах (ru)
  • lemma that the greatest common divisor of the coefficients is a multiplicative function (en)
dbo:wikiPageWikiLink
dbp:mathStatement
  • For each pair of polynomials in , : where denotes the radical of an ideal. Moreover, if is a GCD domain , then : where denotes the unique minimal principal ideal containing a finitely generated ideal . (en)
  • If P and Q are primitive polynomials over the integers, their product PQ is also primitive. (en)
  • A non-constant polynomial in Z[X] is irreducible in Z[X] if and only if it is both irreducible in Q[X] and primitive in Z[X]. (en)
  • Two polynomials are primitive if and only if the product is primitive. (en)
dbp:name
  • Proposition (en)
  • Corollary (en)
  • Gauss's lemma (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Gauss's lemma (polynomials) (en)
  • Lema de Gauss (es)
  • Lemma von Gauß (de)
  • Lemme de Gauss (polynômes) (fr)
  • Lemma di Gauss (polinomi) (it)
  • 원시 다항식 (ko)
  • Twierdzenie Gaussa (algebra) (pl)
  • Lema de Gauss (pt)
  • Лемма Гаусса о приводимости многочленов (ru)
  • Лема Гауса про незвідні многочлени (uk)
  • 高斯引理 (多項式) (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International