An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

unknown

Property Value
dbo:description
  • mathematischer Satz (de)
  • la teoremo, ke prezento de finia grupo super komuta kampo de karaktero ne dividanta la grandon de la grupo malkomponiĝas en rektan sumon de neredukteblaj prezentoj (eo)
  • csoportelméleti tétel (hu)
  • teorema em teoria de grupos (pt)
  • teorema en teoria de grups (ca)
  • le théorème que toute représentation d’un groupe fini 𝐺 sur un corps, dont la caractéristique ne divise pas l’ordre de 𝐺, est complètement réductible (fr)
  • theorem that a representation of a finite group over a field with characteristic not dividing the order of the group decomposes as a direct sum of irreducible representations (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:mathStatement
  • Every representation of a finite group over a field with characteristic not dividing the order of is a direct sum of irreducible representations. (en)
  • Let be a finite group and a field whose characteristic does not divide the order of . Then , the group algebra of , is semisimple. (en)
  • If is a group and is a field with characteristic not dividing the order of , then the category of representations of over is semi-simple. (en)
dbp:name
  • Corollary (en)
  • Maschke's Theorem (en)
  • Maschke's theorem (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:label
  • Maschke's theorem (en)
  • Satz von Maschke (de)
  • Teorema de Maschke (es)
  • Teoremo de Maschke (eo)
  • Théorème de Maschke (fr)
  • マシュケの定理 (ja)
  • Теорема Машке (ru)
  • Теорема Машке (uk)
  • 马施克定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International