An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

unknown

Property Value
dbo:description
  • mathematical formula (en)
dbo:wikiPageWikiLink
dbp:1a
  • Simon (en)
  • Simons (en)
  • Huisken (en)
dbp:1loc
  • Section 4.2 (en)
  • Lemma 2.1 (en)
  • Lemma B.8 (en)
dbp:1y
  • 1968 (xsd:integer)
  • 1983 (xsd:integer)
  • 1984 (xsd:integer)
  • 1986 (xsd:integer)
dbp:2a
  • Kobayashi (en)
  • Chern (en)
  • do Carmo (en)
dbp:2y
  • 1970 (xsd:integer)
dbp:reference
  • Gerhard Huisken. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84 , no. 3, 463–480. (en)
  • Enrico Giusti. Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp. (en)
  • Leon Simon. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp. (en)
  • Gerhard Huisken. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20 , no. 1, 237–266. (en)
  • Tobias Holck Colding and William P. Minicozzi, II. A course in minimal surfaces. Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. (en)
  • James Simons. Minimal varieties in Riemannian manifolds. Ann. of Math. 88 , 62–105. (en)
  • S.S. Chern, M. do Carmo, and S. Kobayashi. Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields , 59–75. Proceedings of a Conference in honor of Professor Marshall Stone, held at the University of Chicago, May 1968. Springer, New York. Edited by Felix E. Browder. (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Simons' formula (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International