Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Meagre set
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
In topology, a countable union of nowhere dense subsets
Property
Value
dbo:
description
pojęcie topologii
(pl)
concepto en topología
(es)
категория множеств по Бэру - множество, которое можно представить в виде счётного объединения нигде не плотных в множеств
(ru)
in topology, a countable union of nowhere dense subsets
(en)
dbo:
wikiPageWikiLink
dbr
:Interior_(topology)
dbr
:Isolated_point
dbr
:Cantor_set
dbr
:Complement_(set_theory)
dbr
:Countable_set
dbr
:Baire_category_theorem
dbc
:Descriptive_set_theory
dbr
:Gδ_set
dbr
:Baire_space
dbr
:Mathematics
dbr
:Open_set
dbr
:Uniform_convergence
dbr
:General_topology
dbc
:General_topology
dbr
:Discrete_space
dbr
:Subset
dbr
:Topological_space
dbr
:Functional_analysis
dbr
:Intersection_(set_theory)
dbr
:Nicolas_Bourbaki
dbr
:Subspace_topology
dbr
:Banach–Mazur_game
dbr
:Complete_metric_space
dbr
:T1_space
dbr
:Cofiniteness
dbr
:Union_(set_theory)
dbr
:Negligible_set
dbr
:Lebesgue_measure
dbr
:Fσ_set
dbr
:Sigma-ideal
dbr
:Topological_vector_spaces
dbr
:Nowhere_dense
dbr
:Nowhere_differentiable_function
dbr
:Fat_Cantor_set
dbr
:Winning_strategy
dbr
:Locally_compact_Hausdorff
dbr
:René_Baire
dbp:
mathStatement
For any meeting the above criteria, player has a winning strategy if and only if is meagre.
(en)
dbp:
name
Theorem
(en)
dbp:
wikiPageUsesTemplate
dbt
:Cite_book
dbt
:Reflist
dbt
:Sfn
dbt
:Narici_Beckenstein_Topological_Vector_Spaces
dbt
:Rudin_Walter_Functional_Analysis
dbt
:Willard_General_Topology
dbt
:Google_books
dbt
:Visible_anchor
dbt
:Em
dbt
:Math_theorem
dbt
:Annotated_link
dbt
:Short_description
dbt
:Bourbaki_General_Topology_Part_II_Chapters_5-10
dct:
subject
dbc
:Descriptive_set_theory
dbc
:General_topology
rdfs:
label
Meagre set
(en)
Conjunt magre
(ca)
Množina první kategorie
(cs)
Magere Menge
(de)
Ensemble maigre
(fr)
제1 범주 집합
(ko)
Zbiór pierwszej kategorii
(pl)
Conjunto magro
(pt)
Множина першої категорії
(uk)
owl:
sameAs
freebase
:Meagre set
wikidata
:Meagre set
dbpedia-de
:Meagre set
dbpedia-fr
:Meagre set
dbpedia-pt
:Meagre set
dbpedia-fa
:Meagre set
dbpedia-pl
:Meagre set
dbpedia-ko
:Meagre set
dbpedia-ca
:Meagre set
dbpedia-cs
:Meagre set
dbpedia-pms
:Meagre set
dbpedia-uk
:Meagre set
dbpedia-global
:Meagre set
dbr
:Meagre set
prov:
wasDerivedFrom
wikipedia-en
:Meagre_set?oldid=1296085628&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Meagre_set
is
dbo:
wikiPageRedirects
of
dbr
:Comeagre_set
dbr
:Nonmeager_set
dbr
:First_category
dbr
:Banach_category_theorem
dbr
:Set_of_first_category
dbr
:Set_of_second_category
dbr
:Co-meager
dbr
:Co-meager_set
dbr
:Co-meager_subset
dbr
:Co-meagre
dbr
:Co-meagre_set
dbr
:Co-meagre_subset
dbr
:Comeager
dbr
:Comeager_set
dbr
:Comeager_subset
dbr
:Comeagre
dbr
:Comeagre_subset
dbr
:Meager_set
dbr
:Meager_space
dbr
:Meager_subset
dbr
:Meager_subspace
dbr
:Meager_topological_space
dbr
:Meagre_space
dbr
:Meagre_subset
dbr
:Meagre_subspace
dbr
:Meagre_topological_space
dbr
:Non-meager
dbr
:Non-meager_set
dbr
:Non-meager_space
dbr
:Non-meager_subset
dbr
:Non-meager_subspace
dbr
:Non-meagre
dbr
:Non-meagre_set
dbr
:Non-meagre_space
dbr
:Non-meagre_subset
dbr
:Non-meagre_subspace
dbr
:Nonmeager
dbr
:Nonmeager_space
dbr
:Nonmeager_subset
dbr
:Nonmeager_subspace
dbr
:Nonmeagre
dbr
:Nonmeagre_set
dbr
:Nonmeagre_space
dbr
:Nonmeagre_subset
dbr
:Nonmeagre_subspace
dbr
:Residual_set
dbr
:Residual_subset
dbr
:Second_category
is
dbo:
wikiPageWikiLink
of
dbr
:Woodin_cardinal
dbr
:List_of_exceptional_set_concepts
dbr
:List_of_general_topology_topics
dbr
:Cantor_set
dbr
:Dense_set
dbr
:Dirichlet_function
dbr
:Fubini's_theorem
dbr
:Vojtěch_Jarník
dbr
:Henry_John_Stephen_Smith
dbr
:Baire_category_theorem
dbr
:Set_theory
dbr
:Topological_property
dbr
:Antiderivative
dbr
:Smoothness
dbr
:Almost_all
dbr
:Topological_vector_space
dbr
:Baire_space
dbr
:Bernstein_set
dbr
:Liouville_number
dbr
:Null_set
dbr
:Webbed_space
dbr
:List_of_topologies
dbr
:Meager
dbr
:Thin_set
dbr
:Glossary_of_set_theory
dbr
:List_of_types_of_sets
dbr
:Steinhaus_theorem
dbr
:Banach–Mazur_game
dbr
:Baire_space_(set_theory)
dbr
:Glossary_of_arithmetic_and_diophantine_geometry
dbr
:Nowhere_dense_set
dbr
:Filter_(set_theory)
dbr
:Differentiable_function
dbr
:Cardinal_function
dbr
:Cichoń's_diagram
dbr
:Porous_set
dbr
:Comeagre_set
dbr
:Nonmeager_set
dbr
:Luzin_space
dbr
:Sigma-ideal
dbr
:Kuratowski–Ulam_theorem
dbr
:Selection_principle
dbr
:Strong_measure_zero_set
dbr
:Generic_property
dbr
:Γ-space
dbr
:Topological_homomorphism
dbr
:Topological_game
dbr
:Filters_in_topology
dbr
:Hyperfinite_equivalence_relation
dbr
:Cardinal_characteristic_of_the_continuum
dbr
:Set_theory_of_the_real_line
dbr
:List_of_mathematical_jargon
dbr
:Glossary_of_topology
dbr
:First_category
dbr
:Banach_category_theorem
dbr
:Set_of_first_category
dbr
:Set_of_second_category
dbr
:Co-meager
dbr
:Co-meager_set
dbr
:Co-meager_subset
dbr
:Co-meagre
dbr
:Co-meagre_set
dbr
:Co-meagre_subset
dbr
:Comeager
dbr
:Comeager_set
dbr
:Comeager_subset
dbr
:Comeagre
dbr
:Comeagre_subset
dbr
:Meager_set
dbr
:Meager_space
dbr
:Meager_subset
dbr
:Meager_subspace
dbr
:Meager_topological_space
dbr
:Meagre_space
dbr
:Meagre_subset
dbr
:Meagre_subspace
dbr
:Meagre_topological_space
dbr
:Non-meager
dbr
:Non-meager_set
dbr
:Non-meager_space
dbr
:Non-meager_subset
dbr
:Non-meager_subspace
dbr
:Non-meagre
dbr
:Non-meagre_set
dbr
:Non-meagre_space
dbr
:Non-meagre_subset
dbr
:Non-meagre_subspace
dbr
:Nonmeager
dbr
:Nonmeager_space
dbr
:Nonmeager_subset
dbr
:Nonmeager_subspace
dbr
:Nonmeagre
dbr
:Nonmeagre_set
dbr
:Nonmeagre_space
dbr
:Nonmeagre_subset
dbr
:Nonmeagre_subspace
dbr
:Residual_set
dbr
:Residual_subset
dbr
:Second_category
is
foaf:
primaryTopic
of
wikipedia-en
:Meagre_set
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International