An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Wikimedia glossary list article

Property Value
dbo:description
  • спіс артыкулаў у адным з праектаў Вікімедыя (be)
  • ৱিকিপিডিয়া:ৰচনাশৈলীৰ হাতপুথি (as)
  • บทความรายชื่อวิกิมีเดีย (th)
  • විකිමීඩියා ලැයිස්තු ලිපිය (si)
  • стаття-список у проєкті Вікімедіа (uk)
  • Listartikolo en Vikipedio (eo)
  • Wikimedia glossary list article (en)
  • Wikimedia leet airticle (sco)
  • Wikimedia lysartikel (af)
  • Wikimedia-Listn (ba)
  • Wikimedia-Lëschtenartikel (lb)
  • articol-listă în cadrul unui proiect Wikimedia (ro)
  • bài viết danh sách Wikimedia (vi)
  • lista d'un projècte Wikimèdia (oc)
  • lista de un projecto de Wikimedia (ia)
  • popis na Wikimediji (hr)
  • rencana senarai Wikimedia (ms)
  • seznam Wikimedie (sl)
  • seznam na projektech Wikimedia (cs)
  • spisak na Wikimediji (bs)
  • teunuléh dapeuta Wikimèdia (ace)
  • zoznamový článok projektov Wikimedia (sk)
  • উইকিমিডিয়ার তালিকা নিবন্ধ (bn)
  • விக்கிப்பீடியா:பட்டியலிடல் (ta)
  • Уикимедия списък (bg)
  • саҳифаи феҳристӣ (tg)
  • списак на Викимедији (sr)
  • Վիքիմեդիայի նախագծի ցանկ (hy)
  • список на статии на Викимедија (mk)
  • וויקימעדיע ליסטע (ji)
  • قائمة ويكيميديا (ar)
  • 维基媒体列表条目 (zh)
  • 위키미디어 목록 항목 (ko)
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:align
  • right (en)
dbp:defn
  • dbr:Canonical_ring
  • A degree 10 projective variety (en)
  • Degree 10 (en)
  • Having no singularities; see regular local ring. (en)
  • The dual curve of a plane curve is the set of its tangent lines, considered as a curve in the dual projective plane. (en)
  • A regular surface is one whose irregularity is zero. (en)
  • Related to the complex numbers. (en)
  • Local rings are integrally closed; see normal scheme. (en)
  • The envelope of the normals of a curve (en)
  • arithmetic genus of a surface (en)
  • A 1-dimensional family of planes in 3-dimensional projective space . (en)
  • The dimension of the space of sections of the canonical bundle, as in the genus of a curve or the geometric genus of a surface (en)
  • Orthogonal to the tangent space, such as a line orthogonal to the tangent space or the normal bundle. (en)
  • A subvariety of projective space is linearly normal if the linear system defining the embedding is complete; see rational normal curve. (en)
  • The dual of a projective space is the set of hyperplanes, considered as another projective space. (en)
  • The tangent developable of a curve is the surface consisting of its tangent lines. (en)
dbp:last
  • Baker (en)
dbp:no
  • 1 (xsd:integer)
  • 2 (xsd:integer)
  • 3 (xsd:integer)
  • 4 (xsd:integer)
dbp:pre
  • Conventions (en)
dbp:quote
  • On the other hand, while most of the material treated in the book exists in classical treatises in algebraic geometry, their somewhat archaic terminology and what is by now completely forgotten background knowledge makes these books useful to but a handful of experts in the classical literature. (en)
  • ...we refer to a certain degree of informality of language, sacrificing precision to brevity, ..., and which has long characterized most geometrical writing. ...[The meaning] depends always on the context and is invariably assumed to be capable of unambiguous interpretation by the reader. (en)
  • Most particularly we refer to the recurrent use of such adjectives as `general' or `generic', or such phrases as `in general', whose meaning, wherever they are used, depends always on the context and is invariably assumed to be capable of unambiguous interpretation by the reader. (en)
dbp:refs
  • yes (en)
dbp:seealso
  • yes (en)
dbp:sym
  • yes (en)
dbp:width
  • 30.0 (dbd:perCent)
dbp:wikiPageUsesTemplate
dbp:x
  • [[#XYZ (en)
dbp:year
  • 1922 (xsd:integer)
  • 1923 (xsd:integer)
  • 1925 (xsd:integer)
  • 1933 (xsd:integer)
dct:subject
rdfs:label
  • Glossary of classical algebraic geometry (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International