An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Geometric relation between the roots of a polynomial and those of its derivative

Property Value
dbo:description
  • matematikai állítás (hu)
  • mathematischer Satz (de)
  • théorème de topologie algébrique (fr)
  • własność wielomianów zespolonych (pl)
  • teorema sulle radici di un polinomio e della sua derivata (it)
  • geometric relation between the roots of a polynomial and those of its derivative (en)
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:id
  • p/g110080 (en)
dbp:mode
  • cs1 (en)
dbp:proof
  • By the fundamental theorem of algebra, is a product of linear factors as : where the complex numbers are the – not necessarily distinct – zeros of the polynomial , the complex number is the leading coefficient of and is the degree of . For any root of , if it is also a root of , then the theorem is trivially true. Otherwise, we have for the logarithmic derivative : Hence :. Taking their conjugates, and dividing, we obtain as a convex sum of the roots of : : (en)
dbp:title
  • Proof (en)
  • Gauss-Lucas theorem (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Gauss–Lucas theorem (en)
  • مبرهنة غاوس–لوكاس (ar)
  • Satz von Gauß-Lucas (de)
  • Teorema de Gauss-Lucas (es)
  • Teorema di Gauss-Lucas (it)
  • Théorème de Gauss-Lucas (fr)
  • 가우스-뤼카 정리 (ko)
  • Stelling van Gauss-Lucas (nl)
  • Twierdzenie Gaussa-Lucasa (pl)
  • Теорема Гаусса — Люка (ru)
  • Теорема Гауса — Люка (uk)
  • 高斯-卢卡斯定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International