An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Fundamental principle in quantum physics

Property Value
dbo:description
  • Предел точности измерения величин квантовой системы, открытый в 1927 году (ru)
  • عدم قطعیت در تعیین سرعت یا مکان ذره (fa)
  • কোয়ান্টাম বলবিজ্ঞানের এক মৌলিক নীতি (bn)
  • Inégalités mathématiques de la mécanique quantique (fr)
  • مبدأ التشكيك و عدم اليقين البَّاري الخاص بالتتربب الإلكتروني ( الإلكترونات ) (ar)
  • Fundamental principle in quantum physics (en)
  • Principio de la mecánica cuántica (es)
  • la principo, ke kvantuma stato ne povas havi kaj certan pozicion kaj certan movokvanton (eo)
  • fundamentale Relation der Quantenmechanik (de)
  • fundamenteel principe in de kwantummechanica (nl)
  • mätosäkerhet inom kvantfysiken (sv)
  • nguyên lý cơ học lượng tử (vi)
  • osnovno načelo v kvantni fiziki (sl)
  • podstawowe prawo mechaniki kwantowej (pl)
  • principi de la física quàntica (ca)
  • principio fondamentale della meccanica quantistica (it)
  • princípio fundamental na física quântica (pt)
  • квантова механіка (uk)
  • 量子力学における基礎的原理 (ja)
  • 量子力學概念 (zh)
  • Werner Heisenbergin vuonna 1927 esittämä kvanttimekaniikan perusperiaate (fi)
  • 양자역학에서, 비가환인 두 관측가능량을 한꺼번에 정확히 측정할 수 없다는 원리 (ko)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:align
  • right (en)
dbp:backgroundColour
  • #F5FFFA (en)
dbp:borderColour
  • #0073CF (en)
dbp:caption
dbp:cellpadding
  • 6 (xsd:integer)
dbp:date
  • December 2024 (en)
dbp:direction
  • vertical (en)
dbp:footer
  • , (en)
  • , and (en)
  • Position and momentum probability densities for an initial Gaussian distribution. From top to bottom, the animations show the cases (en)
  • . Note the tradeoff between the widths of the distributions. (en)
  • Ω = 2ω (en)
  • Ω = ω (en)
  • Ω = ω/2 (en)
  • Propagation of de Broglie waves in 1d—real part of the complex amplitude is blue, imaginary part is green. The probability of finding the particle at a given point x is spread out like a waveform, there is no definite position of the particle. As the amplitude increases above zero the curvature reverses sign, so the amplitude begins to decrease again, and vice versa—the result is an alternating amplitude: a wave. (en)
dbp:id
  • p/u095100 (en)
dbp:image
  • Propagation of a de broglie plane wave.svg (en)
  • Propagation of a de broglie wavepacket.svg (en)
  • Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_narrow.gif (en)
  • Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_wide.gif (en)
  • Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_balanced.gif (en)
dbp:indent
  • : (en)
dbp:proof
  • The derivation shown here incorporates and builds off of those shown in Robertson, Schrödinger and standard textbooks such as Griffiths. For any Hermitian operator , based upon the definition of variance, we have we let and thus Similarly, for any other Hermitian operator in the same state for The product of the two deviations can thus be expressed as In order to relate the two vectors and , we use the Cauchy–Schwarz inequality which is defined as and thus Equation can be written as Since is in general a complex number, we use the fact that the modulus squared of any complex number is defined as , where is the complex conjugate of . The modulus squared can also be expressed as we let and and substitute these into the equation above to get The inner product is written out explicitly as and using the fact that and are Hermitian operators, we find Similarly it can be shown that Thus, we have and We now substitute the above two equations above back into Eq. and get Substituting the above into Equation we get the Schrödinger uncertainty relation This proof has an issue related to the domains of the operators involved. For the proof to make sense, the vector has to be in the domain of the unbounded operator , which is not always the case. In fact, the Robertson uncertainty relation is false if is an angle variable and is the derivative with respect to this variable. In this example, the commutator is a nonzero constant—just as in the Heisenberg uncertainty relation—and yet there are states where the product of the uncertainties is zero. This issue can be overcome by using a variational method for the proof, or by working with an exponentiated version of the canonical commutation relations. Note that in the general form of the Robertson–Schrödinger uncertainty relation, there is no need to assume that the operators and are self-adjoint operators. It suffices to assume that they are merely symmetric operators. (en)
dbp:reason
  • What printing/edition does this page number refer to? Use year for that, and orig-year for original publication date (en)
dbp:title
  • Proof of the Schrödinger uncertainty relation (en)
  • Uncertainty principle (en)
dbp:width
  • 250 (xsd:integer)
  • 360 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Uncertainty principle (en)
  • مبدأ الريبة (ar)
  • Principi d'incertesa de Heisenberg (ca)
  • Αρχή της απροσδιοριστίας (el)
  • Princip neurčitosti (cs)
  • Necerteca principo de Heisenberg (eo)
  • Heisenbergen ziurgabetasunaren printzipioa (eu)
  • Relación de indeterminación de Heisenberg (es)
  • Heisenbergsche Unschärferelation (de)
  • Prinsip ketidakpastian Heisenberg (in)
  • Prionsabal éiginnteachta Heisenberg (ga)
  • Principe d'incertitude (fr)
  • Principio di indeterminazione di Heisenberg (it)
  • 不確定性原理 (ja)
  • 불확정성 원리 (ko)
  • Onzekerheidsrelatie van Heisenberg (nl)
  • Zasada nieoznaczoności (pl)
  • Princípio da incerteza de Heisenberg (pt)
  • Osäkerhetsprincipen (sv)
  • Принцип неопределённости (ru)
  • Принцип невизначеності (uk)
  • 不确定性原理 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International