Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Fractional ideal
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
Generalization of the ring-theoretical notion of ideal to integral domains
Property
Value
dbo:
description
generalizare a idealelor din teoria inelelor la domenii de integritate
(ro)
generalization of the ring-theoretical notion of ideal to integral domains
(en)
dbo:
wikiPageExternalLink
http://wstein.org/books/ant/ant.pdf
dbo:
wikiPageWikiLink
dbr
:Prime_ideal
dbr
:Local_ring
dbr
:Ideal_quotient
dbr
:Finitely_generated_module
dbr
:Commutative_algebra
dbr
:Discrete_valuation_ring
dbr
:Unique_factorization_domain
dbc
:Algebraic_number_theory
dbr
:Cambridge_University_Press
dbr
:Integral_domain
dbr
:Ring_of_integers
dbr
:Spectrum_of_a_ring
dbr
:Integrally_closed_domain
dbr
:Mathematics
dbr
:Maximal_ideal
dbr
:Algebraic_number_field
dbr
:Exact_sequence
dbr
:Dedekind_domain
dbr
:Ascending_chain_condition
dbr
:Submodule
dbc
:Ideals_(ring_theory)
dbr
:Ideal_(ring_theory)
dbr
:Ideal_class_group
dbr
:Denominator
dbr
:Mori_domain
dbr
:Abelian_group
dbr
:Field_of_fractions
dbr
:Quotient_group
dbr
:Noetherian_ring
dbr
:Projective_module
dbr
:Class_field_theory
dbr
:Krull_domain
dbr
:Number_field
dbr
:Springer_Verlag
dbr
:Divisorial_sheaf
dbr
:Dedekind-Kummer_theorem
dbr
:Spec_of_a_ring
dbr
:Unit_ideal
dbr
:Ring_ideal
dbr
:Vector_bundle_(algebraic_geometry)
dbp:
wikiPageUsesTemplate
dbt
:Reflist
dbt
:Sfn
dbt
:Citation
dbt
:Ring_theory_sidebar
dbt
:Short_description
dct:
subject
dbc
:Algebraic_number_theory
dbc
:Ideals_(ring_theory)
rdfs:
label
Fractional ideal
(en)
Lomený ideál
(cs)
Gebrochenes Ideal
(de)
Idéal fractionnaire
(fr)
Ideale frazionario
(it)
分数イデアル
(ja)
분수 아이디얼
(ko)
Дробный идеал
(ru)
Дробовий ідеал
(uk)
分式理想
(zh)
owl:
sameAs
freebase
:Fractional ideal
yago-res
:Fractional ideal
wikidata
:Fractional ideal
dbpedia-it
:Fractional ideal
dbpedia-de
:Fractional ideal
dbpedia-fr
:Fractional ideal
dbpedia-zh
:Fractional ideal
dbpedia-ja
:Fractional ideal
dbpedia-fa
:Fractional ideal
dbpedia-ru
:Fractional ideal
dbpedia-ko
:Fractional ideal
dbpedia-cs
:Fractional ideal
dbpedia-uk
:Fractional ideal
dbpedia-global
:Fractional ideal
dbr
:Fractional ideal
prov:
wasDerivedFrom
wikipedia-en
:Fractional_ideal?oldid=1291732975&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Fractional_ideal
is
dbo:
wikiPageRedirects
of
dbr
:Invertible_ideal
dbr
:Group_of_fractional_ideals
dbr
:Fractional_principal_ideal
dbr
:Fractionary_ideal
dbr
:Principal_fractional_ideal
dbr
:Divisorial_fraction_ideal
dbr
:Divisorial_fractional_ideal
dbr
:Divisorial_ideal
dbr
:Ideal_group
dbr
:Integral_ideal
is
dbo:
wikiPageWikiLink
of
dbr
:List_of_commutative_algebra_topics
dbr
:Ideal_quotient
dbr
:Narrow_class_group
dbr
:Finitely_generated_module
dbr
:Hecke_character
dbr
:Ideal_theory
dbr
:Discrete_valuation_ring
dbr
:Algebraic_number_theory
dbr
:Algebraic_curve
dbr
:Integrally_closed_domain
dbr
:P-adic_number
dbr
:Invertible_sheaf
dbr
:Ring_class_field
dbr
:Brumer–Stark_conjecture
dbr
:Dedekind_domain
dbr
:Different_ideal
dbr
:Stickelberger's_theorem
dbr
:Takagi_existence_theorem
dbr
:Ideal_(ring_theory)
dbr
:Ring_theory
dbr
:Divisor_(algebraic_geometry)
dbr
:Ideal_class_group
dbr
:Glossary_of_arithmetic_and_diophantine_geometry
dbr
:Tertiary_ideal
dbr
:Principalization_(algebra)
dbr
:Ideal_norm
dbr
:S-unit
dbr
:Ray_class_field
dbr
:Basic_Number_Theory
dbr
:Conductor_(ring_theory)
dbr
:Invertible_ideal
dbr
:Glossary_of_commutative_algebra
dbr
:Sheaf_of_modules
dbr
:Group_of_fractional_ideals
dbr
:Fractional_principal_ideal
dbr
:Fractionary_ideal
dbr
:Principal_fractional_ideal
dbr
:Divisorial_fraction_ideal
dbr
:Divisorial_fractional_ideal
dbr
:Divisorial_ideal
dbr
:Ideal_group
dbr
:Integral_ideal
is
foaf:
primaryTopic
of
wikipedia-en
:Fractional_ideal
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International