About: Normal matrix

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Matrix that commutes with its conjugate transpose

Property Value
dbo:description
  • 複素数に成分をとる正方行列であって、自身のエルミート共軛と可換となるような行列 (ja)
  • elemento algebraico matricial con propiedad conmutativa del producto de su hermitiano. (es)
  • matrice care comută cu transpusa sa conjugată (ro)
  • matrice commutant avec da matrice adjointe (fr)
  • matrix that commutes with its conjugate transpose (en)
  • typ zespolonej macierzy kwadratowej definiowany sprzężeniem hermitowskim (pl)
  • Matrix, die mit ihrer adjungierten Matrix kommutiert (de)
  • čtvercová komplexní matice A (cs)
dbo:wikiPageWikiLink
dbp:mathStatement
  • A normal matrix is unitary if and only if all of its eigenvalues lie on the unit circle of the complex plane. (en)
  • A normal triangular matrix is diagonal. (en)
  • A normal matrix is self-adjoint if and only if its spectrum is contained in . In other words: A normal matrix is Hermitian if and only if all its eigenvalues are real. (en)
  • If and are normal with , then both and are also normal. Furthermore there exists a unitary matrix such that and are diagonal matrices. In other words and are simultaneously diagonalizable. (en)
  • A matrix is normal if and only if there exist a diagonal matrix and a unitary matrix such that . (en)
dbp:name
  • Proposition (en)
dbp:wikiPageUsesTemplate
rdfs:label
  • Normal matrix (en)
  • مصفوفة نظامية (ar)
  • Matriu normal (ca)
  • Normální matice (cs)
  • Normala matrico (eo)
  • Normale Matrix (de)
  • Matriz normal (es)
  • Matriks normal (in)
  • Matrice normale (it)
  • Matrice normale (fr)
  • 正規行列 (ja)
  • 정규 행렬 (ko)
  • Normale matrix (nl)
  • Macierz normalna (pl)
  • Matriz normal (pt)
  • Normal matris (sv)
  • Нормальна матриця (uk)
  • Нормальная матрица (ru)
  • 正规矩阵 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International