An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Locally convex topological vector space that coincides with the continuous dual of its continuous dual space, both as linear space and as topological space

Property Value
dbo:description
  • loke konveksa spaco, kiu egalas la dualon de sia dualo (eo)
  • locally convex topological vector space that coincides with the continuous dual of its continuous dual space, both as linear space and as topological space (en)
  • typ unormowanej przestrzeni liniowej (pl)
  • 스스로의 연속 쌍대의 연속 쌍대와 표준적으로 동형인 국소 볼록 공간 (ko)
  • банахово пространство (в более общем случае локально выпуклое пространство) X, совпадающее при каноническом вложении со своим вторым сопряженным X** (ru)
dbo:wikiPageWikiLink
dbp:mathStatement
  • A real Banach space is reflexive if and only if every pair of non-empty disjoint closed convex subsets, one of which is bounded, can be strictly separated by a hyperplane. (en)
  • A Banach space is reflexive if and only if every continuous linear functional on attains its supremum on the closed unit ball in (en)
  • A locally convex Hausdorff space is semi-reflexive if and only if with the -topology has the Heine–Borel property . (en)
  • A locally convex space is reflexive if and only if it is semi-reflexive and barreled. (en)
  • The strong dual of a semireflexive space is barrelled. (en)
  • If is a Hausdorff locally convex space then the canonical injection from into its bidual is a topological embedding if and only if is infrabarreled. (en)
dbp:name
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:label
  • Reflexive space (en)
  • Reflexivní prostor (cs)
  • Reflexiver Raum (de)
  • Espacio reflexivo (es)
  • Spazio riflessivo (it)
  • Espace réflexif (fr)
  • 回帰的空間 (ja)
  • Przestrzeń refleksywna (pl)
  • Рефлексивний простір (uk)
  • Reflexivt rum (sv)
  • Рефлексивное пространство (ru)
  • 自反空间 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International