An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia-live.demo.openlinksw.com

Theorem

Property Value
dbo:description
  • mathematischer Satz (de)
  • theorem (en)
  • teorema (ca)
  • 関数解析学の分野におけるいくつかの有名な定理に対する呼称 (ja)
  • représentation d'un dual par un produit scalaire (fr)
  • twierdzenie analizy funkcjonalnej o przestrzeniach Hilberta (pl)
  • משפט יסודי באנליזה פונקציונלית (iw)
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:drop
  • hidden (en)
dbp:group
  • note (en)
  • proof (en)
dbp:left
  • true (en)
dbp:mathStatement
  • Let be a Hilbert space whose inner product is linear in its argument and antilinear in its second argument and let be the corresponding physics notation. For every continuous linear functional there exists a unique vector called the such that Importantly for Hilbert spaces, is always located in the coordinate of the inner product. Furthermore, the length of the representation vector is equal to the norm of the functional: and is the unique vector with It is also the unique element of minimum norm in ; that is to say, is the unique element of satisfying Moreover, any non-zero can be written as (en)
  • The is the injective linear operator isometry The Riesz representation theorem states that this map is surjective when is complete and that its inverse is the bijective isometric antilinear isomorphism Consequently, continuous linear functional on the Hilbert space can be written uniquely in the form where for every The assignment can also be viewed as a bijective isometry into the anti-dual space of which is the complex conjugate vector space of the continuous dual space The inner products on and are related by and similarly, The set satisfies and so when then can be interpreted as being the affine hyperplane that is parallel to the vector subspace and contains For the physics notation for the functional is the bra where explicitly this means that which complements the ket notation defined by In the mathematical treatment of quantum mechanics, the theorem can be seen as a justification for the popular bra–ket notation. The theorem says that, every bra has a corresponding ket and the latter is unique. (en)
dbp:name
  • Corollary (en)
dbp:proof
  • To show that fix The definition of implies so it remains to show that If then as desired. (en)
dbp:title
  • Proof (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:label
  • Riesz representation theorem (en)
  • Teorema de representació de Riesz (ca)
  • Rieszova věta o reprezentaci (cs)
  • Teorema de representación de Riesz (es)
  • Darstellungssatz von Fréchet-Riesz (de)
  • Théorème de représentation de Riesz (Fréchet-Riesz) (fr)
  • Teorema di rappresentazione di Riesz (it)
  • リースの表現定理 (ja)
  • 리스 표현 정리 (ko)
  • Representatiestelling van Riesz (nl)
  • Teorema da representação de Riesz (pt)
  • Twierdzenie Riesza (przestrzenie Hilberta) (pl)
  • Riesz representationssats (sv)
  • Теорема представлений Риса (ru)
  • 里斯表示定理 (zh)
  • Теорема Ріса (uk)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International