Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Unipotent
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
One plus nilpotent element
Property
Value
dbo:
description
один плюс нильпотентный элемент
(ru)
1 máis un elemento nilpotente
(gl)
one plus nilpotent element
(en)
mathematisches Objekt, dessen Differenz zur 1 nilpotent
(de)
dbo:
wikiPageWikiLink
dbr
:Algebraic_group
dbr
:Semisimple_representation
dbc
:Ring_theory
dbr
:Subcategory
dbc
:Matrix_theory
dbr
:Algebraically_closed_field
dbr
:Group_representation
dbr
:Complex_number
dbr
:Vector_space
dbr
:Abelian_variety
dbr
:Group_(mathematics)
dbr
:Ring_(mathematics)
dbr
:If_and_only_if
dbr
:Linear_algebraic_group
dbr
:Reductive_group
dbr
:Scheme_(mathematics)
dbr
:Mathematics
dbr
:Equivalence_of_categories
dbr
:Nilpotent_group
dbr
:Short_exact_sequence
dbr
:Characteristic_(algebra)
dbr
:Isomorphism
dbr
:Annals_of_Mathematics
dbr
:Diagonalizable_matrix
dbr
:Radical_of_an_algebraic_group
dbr
:Nilpotent_Lie_algebra
dbr
:Eigenvalue
dbr
:Field_(mathematics)
dbr
:Linear_map
dbr
:Matrix_(mathematics)
dbr
:Subgroup
dbr
:Converse_(logic)
dbr
:Functor
dbr
:Unipotent_representation
dbr
:Baker–Campbell–Hausdorff_formula
dbr
:Characteristic_polynomial
dbr
:Jordan–Chevalley_decomposition
dbr
:Isogeny
dbr
:Perfect_field
dbr
:Frobenius_endomorphism
dbr
:Square_matrix
dbr
:Deligne–Lusztig_theory
dbc
:Algebraic_groups
dbr
:Commensurability_(group_theory)
dbr
:Group_scheme
dbr
:Affine_variety
dbr
:Abelian_varieties
dbr
:Semi-simplicity
dbr
:Exponential_map_(Lie_theory)
dbr
:Isomorphic
dbr
:Algebraic_groups
dbr
:Affine_coordinate_ring
dbr
:Diagonal_matrices
dbr
:Roots_of_unity
dbr
:Lower_central_series
dbr
:Nilpotent_element
dbr
:Upper-triangular_matrix
dbp:
authorlink
Vladimir L. Popov
(en)
dbp:
first
D.A.
(en)
V.L.
(en)
dbp:
id
U/u095400
(en)
U/u095410
(en)
U/u095420
(en)
dbp:
last
Popov
(en)
Suprunenko
(en)
dbp:
title
unipotent element
(en)
unipotent group
(en)
unipotent matrix
(en)
dbp:
wikiPageUsesTemplate
dbt
:Hairsp
dbt
:Main
dbt
:Reflist
dbt
:Anchor
dbt
:Citation
dbt
:ISBN
dbt
:About
dbt
:Who
dbt
:Matrix_classes
dbt
:More_footnotes
dbt
:Springer
dbt
:Short_description
dct:
subject
dbc
:Ring_theory
dbc
:Matrix_theory
dbc
:Algebraic_groups
gold:
hypernym
dbr
:Element
rdfs:
label
Unipotent
(en)
Unipotentes Element
(de)
멱일원
(ko)
Уніпотентний елемент
(uk)
owl:
sameAs
freebase
:Unipotent
yago-res
:Unipotent
wikidata
:Unipotent
dbpedia-de
:Unipotent
dbpedia-ko
:Unipotent
dbpedia-sl
:Unipotent
dbpedia-uk
:Unipotent
dbpedia-global
:Unipotent
dbr
:Unipotent
prov:
wasDerivedFrom
wikipedia-en
:Unipotent?oldid=1291118635&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Unipotent
is
dbo:
wikiPageRedirects
of
dbr
:Unipotent_group
dbr
:K-Unipotent_groups_for_a_field_k_and_its_completion
dbr
:Unipotent_algebraic_group
dbr
:Unipotent_element
dbr
:Unipotent_matrices
dbr
:Unipotent_matrix
dbr
:Unipotent_radical
dbr
:Unipotential
dbr
:Quasi-unipotent
is
dbo:
wikiPageWikiLink
of
dbr
:Steinberg_group_(K-theory)
dbr
:Magma_(algebra)
dbr
:Möbius_transformation
dbr
:Marina_Ratner
dbr
:Adult_stem_cell
dbr
:Linear_algebraic_group
dbr
:Witt_vector
dbr
:Nilpotent
dbr
:Granulopoiesis
dbr
:Cellular_differentiation
dbr
:Triangular_matrix
dbr
:Unipotent_representation
dbr
:Jordan–Chevalley_decomposition
dbr
:Approximation_in_algebraic_groups
dbr
:Unipotent_group
dbr
:Springer_correspondence
dbr
:Springer_resolution
dbr
:Irreducible_representation
dbr
:Ratner's_theorems
dbr
:Hyperbolic_geometry
dbr
:Artin–Hasse_exponential
dbr
:GATA1
dbr
:Kazhdan–Margulis_theorem
dbr
:K-Unipotent_groups_for_a_field_k_and_its_completion
dbr
:Unipotent_algebraic_group
dbr
:Unipotent_element
dbr
:Unipotent_matrices
dbr
:Unipotent_matrix
dbr
:Unipotent_radical
dbr
:Unipotential
dbr
:Quasi-unipotent
is
foaf:
primaryTopic
of
wikipedia-en
:Unipotent
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International