Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Preadditive category
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
Mathematical category whose hom sets form Abelian groups
Property
Value
dbo:
description
mathematical category whose hom sets form Abelian groups
(en)
dbo:
wikiPageWikiLink
dbr
:Jacobson_radical
dbr
:Finite_set
dbr
:Category_theory
dbr
:Coproduct
dbr
:Endomorphism
dbr
:Epimorphism
dbr
:Direct_sum
dbr
:Category_of_abelian_groups
dbr
:Identity_morphism
dbr
:Monomorphism
dbr
:Endomorphism_ring
dbr
:Function_(mathematics)
dbr
:Distinct_(mathematics)
dbr
:Abelian_category
dbc
:Additive_categories
dbr
:Group_(mathematics)
dbr
:Ring_(mathematics)
dbr
:Group_homomorphism
dbr
:If_and_only_if
dbr
:Enriched_category
dbr
:Infinity
dbr
:Mathematics
dbr
:Abstract_nonsense
dbr
:Trivial_group
dbr
:Ring_homomorphism
dbr
:Zero_morphism
dbr
:Category_of_modules
dbr
:Kernel_(algebra)
dbr
:Zero_object
dbr
:Closed_monoidal_category
dbr
:Module_(mathematics)
dbr
:Field_(mathematics)
dbr
:Identity_element
dbr
:Monoid
dbr
:Matrix_(mathematics)
dbr
:Category_(mathematics)
dbr
:Functor
dbr
:Functor_category
dbr
:Kernel_(category_theory)
dbr
:Product_(category_theory)
dbr
:Cokernel
dbr
:Additive_category
dbr
:Nicolae_Popescu
dbr
:Natural_transformation
dbr
:Commutative_ring
dbr
:Pre-abelian_category
dbr
:Equaliser_(mathematics)
dbr
:0_(number)
dbr
:Distributivity
dbr
:Charles_Weibel
dbr
:1_(number)
dbr
:Category_of_vector_spaces
dbr
:Hom-set
dbr
:Terminal_object
dbr
:Bilinear_operator
dbr
:Factor_ring
dbr
:Enriched_functor
dbr
:Ideal_(ring)
dbr
:Coequaliser
dbr
:Commutativity
dbr
:Medial_category
dbr
:Normal_monomorphism
dbr
:Initial_object
dbr
:Ring_(algebra)
dbr
:Trivial_ring
dbp:
wikiPageUsesTemplate
dbt
:Main
dbt
:No_footnotes
dbt
:Category_theory
dbt
:Mvar
dbt
:Section_link
dbt
:Fact
dbt
:Short_description
dct:
subject
dbc
:Additive_categories
gold:
hypernym
dbr
:Category
rdfs:
label
Preadditive category
(en)
前加法圏
(ja)
Pre-additieve categorie
(nl)
Предаддитивная категория
(ru)
預可加範疇
(zh)
owl:
sameAs
freebase
:Preadditive category
yago-res
:Preadditive category
wikidata
:Preadditive category
dbpedia-nl
:Preadditive category
dbpedia-zh
:Preadditive category
dbpedia-ja
:Preadditive category
dbpedia-ru
:Preadditive category
dbpedia-global
:Preadditive category
dbr
:Preadditive category
prov:
wasDerivedFrom
wikipedia-en
:Preadditive_category?oldid=1289117813&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Preadditive_category
is
dbo:
wikiPageRedirects
of
dbr
:Ab-category
dbr
:Linear_category
dbr
:Additive_functor
dbr
:Additive_functors
dbr
:Pre-additive_category
dbr
:Preadditive_categories
is
dbo:
wikiPageWikiLink
of
dbr
:Cuntz_algebra
dbr
:Coproduct
dbr
:Endomorphism
dbr
:Category_of_abelian_groups
dbr
:Endomorphism_ring
dbr
:Karoubi_envelope
dbr
:Abelian_category
dbr
:Yoneda_lemma
dbr
:Ring_(mathematics)
dbr
:Group_homomorphism
dbr
:Timeline_of_category_theory_and_related_mathematics
dbr
:Sum
dbr
:Category_of_sets
dbr
:Enriched_category
dbr
:Equivalence_of_categories
dbr
:Isomorphism_of_categories
dbr
:Motive_(algebraic_geometry)
dbr
:Zero_morphism
dbr
:Coequalizer
dbr
:Module_(mathematics)
dbr
:Category_(mathematics)
dbr
:Category_of_rings
dbr
:Category_of_topological_spaces
dbr
:Functor_category
dbr
:Kernel_(category_theory)
dbr
:Pseudo-abelian_category
dbr
:Cokernel
dbr
:Additive_category
dbr
:Biproduct
dbr
:Grothendieck_category
dbr
:Pre-abelian_category
dbr
:Equaliser_(mathematics)
dbr
:Krull–Schmidt_category
dbr
:Ab-category
dbr
:Outline_of_category_theory
dbr
:Glossary_of_category_theory
dbr
:Linear_category
dbr
:Additive_functor
dbr
:Additive_functors
dbr
:Pre-additive_category
dbr
:Preadditive_categories
is
foaf:
primaryTopic
of
wikipedia-en
:Preadditive_category
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International