Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Functor category
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
Category containing functors with natural transformations as morphisms
Property
Value
dbo:
description
catégorie dont les objets sont des foncteurs et les morphismes sont des transformations naturelles
(fr)
termín teorie kategorií; kategorie tvořená funktory s morfismy tvořenými přirozenými transformacemi
(cs)
category containing functors with natural transformations as morphisms
(en)
dbo:
wikiPageWikiLink
dbr
:Preadditive_category
dbr
:Category_theory
dbr
:Proper_class
dbr
:Small_category
dbr
:Category_of_abelian_groups
dbr
:Morphism
dbr
:Presheaf_(category_theory)
dbr
:Sheaf_(mathematics)
dbr
:Group_representation
dbr
:Cartesian_closed_category
dbr
:Vector_space
dbr
:Abelian_category
dbc
:Functors
dbr
:Yoneda_lemma
dbr
:Group_(mathematics)
dbr
:Ring_(mathematics)
dbr
:Representable_functor
dbr
:Grothendieck_topology
dbr
:Topos
dbc
:Categories_in_category_theory
dbr
:Category_of_sets
dbr
:Mathematics
dbr
:Rule_of_thumb
dbr
:Graph_theory
dbr
:Module_(mathematics)
dbr
:Adjoint_functors
dbr
:Field_(mathematics)
dbr
:Equivalence_(category_theory)
dbr
:Functor
dbr
:Diagram_(category_theory)
dbr
:Abelian_group
dbr
:Product_(category_theory)
dbr
:Natural_transformation
dbr
:Discrete_category
dbr
:Complete_category
dbr
:Exponential_object
dbr
:Group_action_(mathematics)
dbr
:Yoneda_embedding
dbr
:Additive_functor
dbr
:Presheaf
dbr
:Bilinear_operator
dbr
:Full_embedding
dbr
:Arrow_category
dbp:
wikiPageUsesTemplate
dbt
:Portal
dbt
:Reflist
dbt
:Category_theory
dbt
:Short_description
dct:
subject
dbc
:Functors
dbc
:Categories_in_category_theory
gold:
hypernym
dbr
:Functors
rdfs:
label
Functor category
(en)
Kategorie funktorů
(cs)
Funktorkategorie
(de)
関手圏
(ja)
Catégorie de foncteurs
(fr)
Functorcategorie
(nl)
Категория функторов
(ru)
函子範疇
(zh)
owl:
sameAs
freebase
:Functor category
yago-res
:Functor category
wikidata
:Functor category
dbpedia-nl
:Functor category
dbpedia-de
:Functor category
dbpedia-fr
:Functor category
dbpedia-zh
:Functor category
dbpedia-ja
:Functor category
dbpedia-hu
:Functor category
dbpedia-ru
:Functor category
dbpedia-cs
:Functor category
dbpedia-global
:Functor category
dbr
:Functor category
prov:
wasDerivedFrom
wikipedia-en
:Functor_category?oldid=1290734544&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Functor_category
is
dbo:
wikiPageRedirects
of
dbr
:Category_of_functors
is
dbo:
wikiPageWikiLink
of
dbr
:Preadditive_category
dbr
:Category_theory
dbr
:Epimorphism
dbr
:Cone_(category_theory)
dbr
:Morphism
dbr
:Presheaf_(category_theory)
dbr
:Bundle_(mathematics)
dbr
:Cartesian_closed_category
dbr
:Abelian_category
dbr
:Derived_functor
dbr
:Yoneda_lemma
dbr
:Quiver_(mathematics)
dbr
:Topos
dbr
:Injective_object
dbr
:Injective_module
dbr
:Timeline_of_category_theory_and_related_mathematics
dbr
:Final_topology
dbr
:Universal_property
dbr
:Category_of_sets
dbr
:Directed_graph
dbr
:Diagonal_functor
dbr
:Isomorphism_of_categories
dbr
:Limit_(category_theory)
dbr
:Denotational_semantics
dbr
:Groupoid
dbr
:Category_of_small_categories
dbr
:Equivariant_map
dbr
:Transformation_semigroup
dbr
:Module_(mathematics)
dbr
:Functor
dbr
:Diagram_(category_theory)
dbr
:Subobject_classifier
dbr
:Opposite_category
dbr
:Exact_functor
dbr
:Natural_transformation
dbr
:Algebraic_theory
dbr
:Grothendieck_category
dbr
:Hom_functor
dbr
:Discrete_category
dbr
:Group_with_operators
dbr
:Density_theorem_(category_theory)
dbr
:Outline_of_category_theory
dbr
:Glossary_of_category_theory
dbr
:Prestack
dbr
:Simplex_category
dbr
:Zdeněk_Hedrlín
dbr
:Higher-dimensional_algebra
dbr
:Category_of_functors
is
foaf:
primaryTopic
of
wikipedia-en
:Functor_category
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International