Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Complete category
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
Category with all limits of (small) diagrams
Property
Value
dbo:
description
Kategorie, die alle kleinen Limiten besitzt
(de)
category with all limits of (small) diagrams
(en)
dbo:
wikiPageExternalLink
http://katmat.math.uni-bremen.de/acc/acc.pdf
dbo:
wikiPageWikiLink
dbr
:Finite_set
dbr
:Proper_class
dbr
:Coproduct
dbr
:Small_category
dbr
:Category_of_abelian_groups
dbr
:Category_of_groups
dbr
:Abelian_category
dbr
:Pullback_(category_theory)
dbr
:If_and_only_if
dbr
:Complete_lattice
dbr
:Category_of_sets
dbr
:Mathematics
dbr
:Ordinal_number
dbr
:Trivial_group
dbr
:Colimit
dbr
:Limit_(category_theory)
dbr
:Category_of_metric_spaces
dbr
:Category_of_modules
dbc
:Limits_(category_theory)
dbr
:Coequalizer
dbr
:Field_(mathematics)
dbr
:Category_(mathematics)
dbr
:Category_of_rings
dbr
:Simplicial_set
dbr
:Category_of_topological_spaces
dbr
:Wheel_theory
dbr
:Diagram_(category_theory)
dbr
:Pushout_(category_theory)
dbr
:Finite_abelian_group
dbr
:Product_(category_theory)
dbr
:Commutative_ring
dbr
:Posetal_category
dbr
:Pre-abelian_category
dbr
:Equaliser_(mathematics)
dbr
:Category_of_vector_spaces
dbr
:Existence_theorem_for_limits
dbr
:Finite-dimensional
dbr
:Terminal_object
dbr
:Thin_category
dbr
:Duality_(category_theory)
dbr
:Category_of_all_small_categories
dbr
:Category_of_fields
dbr
:Compact_Hausdorff_space
dbr
:Complete_lattices
dbr
:Partially_ordered_class
dbr
:Poset
dbp:
wikiPageUsesTemplate
dbt
:Cite_book
dbt
:Unreferenced_section
dbt
:Short_description
dct:
subject
dbc
:Limits_(category_theory)
gold:
hypernym
dbr
:Category
rdfs:
label
Complete category
(en)
Vollständige Kategorie
(de)
Catégorie complète
(fr)
完備圏
(ja)
완비 범주
(ko)
Полная категория
(ru)
Повна категорія
(uk)
owl:
sameAs
freebase
:Complete category
wikidata
:Complete category
dbpedia-de
:Complete category
dbpedia-fr
:Complete category
dbpedia-ja
:Complete category
dbpedia-ru
:Complete category
dbpedia-ko
:Complete category
dbpedia-uk
:Complete category
dbpedia-global
:Complete category
dbr
:Complete category
prov:
wasDerivedFrom
wikipedia-en
:Complete_category?oldid=1291496166&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Complete_category
is
dbo:
wikiPageRedirects
of
dbr
:Finitely_cocomplete
dbr
:Finitely_cocomplete_category
dbr
:Finitely_complete
dbr
:Finitely_complete_category
dbr
:Bicomplete
dbr
:Bicomplete_category
dbr
:Bicompleteness
dbr
:Cocomplete
dbr
:Cocomplete_category
dbr
:Cocompleteness
is
dbo:
wikiPageWikiLink
of
dbr
:Symmetric_monoidal_category
dbr
:Magma_(algebra)
dbr
:Category_of_abelian_groups
dbr
:Model_category
dbr
:Category_of_groups
dbr
:Abelian_category
dbr
:Diffeology
dbr
:Timeline_of_category_theory_and_related_mathematics
dbr
:Category_of_sets
dbr
:End_(category_theory)
dbr
:Diagonal_functor
dbr
:Exterior_space
dbr
:Limit_(category_theory)
dbr
:Groupoid
dbr
:Category_of_metric_spaces
dbr
:Category_of_small_categories
dbr
:Completeness
dbr
:Initial_and_terminal_objects
dbr
:Accessible_category
dbr
:Adjoint_functors
dbr
:Category_(mathematics)
dbr
:Category_of_rings
dbr
:Category_of_topological_spaces
dbr
:Functor_category
dbr
:Comma_category
dbr
:Grothendieck_category
dbr
:Equaliser_(mathematics)
dbr
:Localizing_subcategory
dbr
:Glossary_of_category_theory
dbr
:Quasitopos
dbr
:Cosmos_(category_theory)
dbr
:Almost_ring
dbr
:Category_of_compactly_generated_weak_Hausdorff_spaces
dbr
:Bornology
dbr
:Finite_completeness
dbr
:Finitely_cocomplete
dbr
:Finitely_cocomplete_category
dbr
:Finitely_complete
dbr
:Finitely_complete_category
dbr
:Bicomplete
dbr
:Bicomplete_category
dbr
:Bicompleteness
dbr
:Cocomplete
dbr
:Cocomplete_category
dbr
:Cocompleteness
is
foaf:
primaryTopic
of
wikipedia-en
:Complete_category
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International