Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Gelfand representation
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia-live.demo.openlinksw.com
Mathematical representation in functional analysis
Property
Value
dbo:
description
mathematischer Satz
(de)
teorema
(ca)
mathematical representation in functional analysis
(en)
dbo:
wikiPageWikiLink
dbr
:Jacobson_radical
dbr
:Banach–Alaoglu_theorem
dbr
:Separable_space
dbr
:Range_of_a_function
dbc
:Functional_analysis
dbc
:Operator_theory
dbr
:Spectral_radius
dbr
:Spectral_theory
dbr
:Laplace_transform
dbr
:Normal_operator
dbr
:If_and_only_if
dbr
:Mathematics
dbr
:Group_algebra_of_a_locally_compact_group
dbr
:Equivalence_of_categories
dbr
:Maximal_ideal
dbr
:Uniform_norm
dbc
:Banach_algebras
dbr
:Tychonoff_space
dbr
:Fourier_transform
dbr
:Norbert_Wiener
dbr
:Topological_space
dbr
:Weak_topology
dbc
:Von_Neumann_algebras
dbr
:Algebra_homomorphism
dbr
:*-algebra
dbr
:C*-algebra
dbc
:C*-algebras
dbr
:Functional_analysis
dbr
:Semiprimitive_ring
dbr
:Functor
dbr
:Banach_algebra
dbr
:Gelfand–Mazur_theorem
dbr
:Gelfand–Naimark_theorem
dbr
:Vanish_at_infinity
dbr
:Compact_space
dbr
:Net_(mathematics)
dbr
:Hausdorff_space
dbr
:Locally_compact_space
dbr
:Commutative
dbr
:Normal_matrix
dbr
:Springer_Verlag
dbr
:Hull-kernel_topology
dbr
:Unital_algebra
dbr
:Homeomorphic
dbr
:Adjoint_functor
dbr
:Metrizable
dbr
:I._M._Gelfand
dbr
:Noncommutative
dbp:
wikiPageUsesTemplate
dbt
:Cite_book
dbt
:Reflist
dbt
:Cite_journal
dbt
:See_also
dbt
:Spectral_theory
dbt
:Citation_needed
dbt
:Functional_analysis
dbt
:Short_description
dct:
subject
dbc
:Functional_analysis
dbc
:Operator_theory
dbc
:Banach_algebras
dbc
:Von_Neumann_algebras
dbc
:C*-algebras
gold:
hypernym
dbr
:Isomorphism
rdfs:
label
Gelfand representation
(en)
Gelfand-Transformation
(de)
Transformata Gelfanda
(pl)
rdfs:
seeAlso
dbr
:Spectrum_of_a_C*-algebra
owl:
sameAs
yago-res
:Gelfand representation
freebase
:Gelfand representation
wikidata
:Gelfand representation
dbpedia-de
:Gelfand representation
dbpedia-pl
:Gelfand representation
dbpedia-global
:Gelfand representation
dbr
:Gelfand representation
prov:
wasDerivedFrom
wikipedia-en
:Gelfand_representation?oldid=1287376510&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Gelfand_representation
is
dbo:
knownFor
of
dbr
:Israel_Gelfand__Israel_Gelfand__1
is
dbo:
wikiPageDisambiguates
of
dbr
:Gelfand
is
dbo:
wikiPageRedirects
of
dbr
:C*-algebra_representation
dbr
:C-*-algebra_representation
dbr
:Gel'fand_duality
dbr
:Gel'fand_representation
dbr
:Gel'fand_spectrum
dbr
:Gelfand_duality
dbr
:Gelfand_isomorphism
dbr
:Gelfand_spectrum
dbr
:Gelfand_transform
dbr
:Gelfand_transformation
is
dbo:
wikiPageWikiLink
of
dbr
:List_of_functional_analysis_topics
dbr
:Continuous_functional_calculus
dbr
:Noncommutative_torus
dbr
:Spectral_theory
dbr
:Quantum_group
dbr
:Noncommutative_geometry
dbr
:Equivalence_of_categories
dbr
:List_of_Russian_mathematicians
dbr
:C*-algebra
dbr
:State_(functional_analysis)
dbr
:List_of_transforms
dbr
:Uniform_algebra
dbr
:Banach_algebra
dbr
:List_of_Russian_people
dbr
:Tychonoff's_theorem
dbr
:Gelfand–Naimark_theorem
dbr
:Approximately_finite-dimensional_C*-algebra
dbr
:Israel_Gelfand
dbr
:Banach_space
dbr
:Locally_compact_space
dbr
:List_of_Russian_scientists
dbr
:Compact_quantum_group
dbr
:Leonidas_Alaoglu
dbr
:Representation_theorem
dbr
:Glossary_of_functional_analysis
dbr
:Gelfand
dbr
:Ergodic_flow
dbr
:C*-algebra_representation
dbr
:C-*-algebra_representation
dbr
:Gel'fand_duality
dbr
:Gel'fand_representation
dbr
:Gel'fand_spectrum
dbr
:Gelfand_duality
dbr
:Gelfand_isomorphism
dbr
:Gelfand_spectrum
dbr
:Gelfand_transform
dbr
:Gelfand_transformation
is
dbp:
knownFor
of
dbr
:Israel_Gelfand
is
foaf:
primaryTopic
of
wikipedia-en
:Gelfand_representation
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International